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Semiclassical Theory of Elastic Perturbation
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The Stueckelberg formulation for transition probabilities is
utilized to explain perturbation effects observed in elastic
differential cross section measurements., The model based on a
competing trajectory concept implies oscillating cross sections
for all inelastic processes occurring by means of a curve crossing
mechanism. Variations are made in the slopes of two crossing
potential energy curves to determine the effect on the cross
section. The model gives qualitative agreement with experiment,
but definitive tests must await more accurate potential energy

curves,
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INTRODUCTION

Several years ago excellent experimental differential cross
section measurements of ion-atom scattering processes! began appear-
ing which under continuing investigation have yielded a wealth of
information.?2s3 Among the features that have been noted is a small
oscillatory behavior called an ''elastic perturbation' whose origin
has been attributed to the crossing of two molecular electronic
energy curves.?. This'perturbation has been observed in four different
systems: He' - Ne, He' - Ar, Ar” - Ar, He' - He (4Hef - “He,
tget - 3He, SHe' - 3%He). Effects of similar appearance have been
observed in several other cystems,? but the experimental conditions
in these cases have made it extremely difficult to isolate the
origin of these anomalies. The abundance of curve crossings in
most atomic and molecular systems would indicate that the elastic
perturbation should be seen at some angular range in most differential

cross section measurements.

As its name implies, the elastic perturbation is a small feature
and thus has only slight effects on quantities such as total cross
sections. When its origins are understood, however, its implications
overshadow its minor perturbing effect: it not only permits the
location and characterization of curve crossings, but it also acts
as a bridge between elastic and inelastic scattering theory, since
even though it is basically an elastic process, more than one energy
state is involved. Furthermore, it clearly implies an oscillatory

behavior for inelastic differential cross sections.

Figure 1 shows typical differential cross sections for several
systems in which the elastic perturbation has been observed. The
perturbation appears very clearly in the He+ - Ar data and to a
lesser extent in the He+ - Ne data as an undulation superimposed
on a monotonically decreasing cross section, The oscillations
cover a wide range of angles, and whether this is due to one curve

crossing or several is difficult to determine. Because He+ - He
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is a symmetric system, its data is complicated by the presence of
major oscillations arising from the interference between the

gerade and ungerade energy curves.® The perturbatioﬁ can be per-
ceived, however, in the vicinity of 18° where a peak is abnormally high
and the surrounding peaks and valleys are distorted. Data of this
nature has also been published for the Ar+ - Ar system,lfor which
perturbations can be observed at E6 == 2200 eV deg., but in this

case the data'is complicated by the large number of possible com-

peting states and it is difficult to make an unambiguous analysis.

The connection between elastic perturbationsand curve crossings
was made by means of a knowledge of the appropriate potential energy
curves and semiclassical arguments relating location of the anomaly
in scattering angle to distance of closest approach and thus to a
region of the potential. For He; the crossing was estimated to be

at 0,90 A, while a priori calculations® indicated the crossing (or
pseudocrossing) of two 22% states at 0.80 A. For the He' - Ne system

the crossing was estimated to be at 1 A, and calculations by Michels”
indicate a crossing at 0.93 A between a 2% and a 2I state. The 2

) N .
state arises from a ground state He atom and a ground state Ne . This

type of crossing was recently discussed by Lichten.®

To date the most systematic experimental study of the elastic
perturbation has been performed on the He+ —’He system.? Before the
perturbation for this system can be characterized, extensive numer-
ical analysis of the data will be needed to separate the interference
pattern of the gerade and ungerade states from the pattern of the
elastic perturbation. On the other hand, the He: molecule has only
three electrons, and so accurate a priori calculations of the approp-

riate potential energy curves are available.

In this paper it will be assumed that the elastic perturbation
arises from the crossing of only two electronic states and that the
energies are small enough that any effects due to the momentum of
the eiectrons and Coriolis forces can be ignored. Our object will
will to determine whether such a simple theory is sufficient to
produce general agreement with experiment and to provide some in-

sight into the details of curve crossing phenomena.
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THEORY

The two-state problem, whether it be an elastic or inelastic

process, 1is governed by a pair of coupled equations:

2 ‘ :
d?y, (1) [kf - Uy (r) = f&fﬁ%l] X1 (1) = Uy (r)Xe(r) . |
dr2 r
(1)
2
d. .X_z(._,r._) [kz' Uyo(r) -————E(Ml)] X2(T) = Uy (2)Xe (1)
dr? . r

where Uii are the potentials for the respective states and Uij is

the interaction energy between the initial and final states. The
origin and general properties of these equations have been extensively
discussed elsewhere.'® While the general behavior of Egs. (1) is
knoWn; their numerical solution is besgt with convergence problems
and, as yet, very few results have been obtained for this type of
scattering problem. The approach here is a much simpler one and
necessarily is only approximate. its formulation ensures at least

qualitative agreement with experiment and thus, although the treat-

ment is not rigorous, it is informative,.

The model used in this paper is most easily understood by
examining hypothetical potential energy curves for two states A and
B involved in a collisions (see Figure 2). These potentials are not
adiabatic states but rather are diabatic energy levels that might
be expected when the internuclear velocity is nonzero.® Thus, there
is no avoided crossing, but instead the potentials are allowed to
cross. The adiabatic curves are indicated by the dashed lines. An
elastic collision between A and B-corresponds to entering and exiting

along pathway 1. At small internuclear distances the collision may

proceed along pathway 2 or 3, and, in faét, depending upon the

radial vélocity, it may follow both, For values of the radial
velocity approaching zero the collision proceeds exclusively along
the adiabatic curve, that is, pathways 1 and 3. For large velocities

it will proceed along the diabatic pathway, curves 1 and 2. For



intermediate velocities pathways 2 and 3 compete, giving rise to
an interference pattern. It is this interference that is responsible

for the elastic perturbation.

Inelastic processes can be considered as complementary to the
elastic perturbations; the only difference is an exit along pathway
4 rather than 1, Inelastic differential cross sections therefore
should always exhibit undulatory behavior. Likewise,if additional
curve crossings are involved, perturbations may also appear in the

inelastic measurements.

The primary problem in performing quantitative calculations of
the elastic perturbation, or of an inelastic process for that matter,.
is the determination of the probability that the collision follows
a particular path. These probabilities can be obtained either from

the solution of Egs. (1) or by means of approximations.

The most widely discussed approximation is the Landau-Zener
formula. Derived independently by Landau, Zener, and Stueckelberg,
it has been used many times in the calculation of total cross
sections. Derivations and essential assumptions are given in many
text books!® and will not be repeated here. Its validity and limita-
tions have been discussed by numerous authors,!! and possible
improvements have been suggested by Coulson and Zalewski.'2 The
Landau~Zener formula relates the probability, p, of crossing from
one adiabatic curve to another (i.e., of remaining on a single
diabatic curve) to several parameters describing the physical char-

acteristics of the crossing:

p(E, & = exp(—vo/vr(E,z)) s
vo = Hyg(R)/K[V] - il p 2)
2,F, 142
v’rz(E,fx) — .g [E - Vl(R') - M (L'E) :I
b x 2uR 2
x

where v, is a characteristic velocity defined by the shape of the

crossing. H;, is the perturbation Hamiltonian between the two statess



at the crossing point its value is equal to 1/2 the difference be-
tween the adiabatic energies. Vi’ is the slope of one of the
diabatic potentials evaluated at the crossing point. v. is the
radial velocity and is dependent upon the incident energy and the
angular momentuﬁ. Since the LandauQZener formula assumes that the
transition occurs only at the crosSing point, all gquantities are
evaluated at Rx' For values of 4 such that'Vr is imaginery, p is

taken equal to unity.

For the elastic perturbatibn the necessary probabilities are
easily ascertained from Fig. 2. One possible trajectory is along
pathway 1 to 2 and back out along 1; that is, the diabatic curve
is followed thrdughout the collision. This involves two transitions,

so the probability is
Pd(ﬂ) = p3A(H . (3

The other possibility is to follow the adiabatic route: 1 — 3 = 1.’

The cofresponding probability is
P(H = [1-pHl2 . (4)

" These probabilities modulate the interference between the two possible

trajectories the differential cross section is thus written

2
ao® = |4 + 2o , (5)

j 1 12 218 (4
£e) = 2 §<2m)[pj/ (e 3 P-11Q (cos & . (&

If the semiclassical approximations of Ford and Wheeler '3 are

now applied, the cross section hecomes

T _1/s 4
do(8) =[P O /‘elAd/l'S + Po / e 1Aa/¥/ 2 7
dd a a
Here 65 is fhe classical expression for the differential cross section:
0. = b, (sineide/db. ‘) R (8)
J J/ J

where bj is the impact paraméter for the appropriate adiabatic or

diabatic potential, and it is related to the angular momentum



quantum number, £, by the relation (£ + 4) = bk. The Aj can be
taken as the classical actions and are readily calculated from

the phase shift and deflection function:!4

A = 2h0, - (L +% 6 . (9

Egs. (7) and (9) become much more complicated when rainbow scatter-

ing is involved.

It is clear that this model, cast in the form of Eq. 8, is the
one put forth by Stueckelberg some 30 years ago. Recently Green
and Johnson'® investigated this and similar approaches to curve
crossing phenomena and applied the resulfs to electron capture

processes for H+—.He and other asymmetric systems.

If this model is applied to a symmetric system, such as He;,
additional energy paths must be considered because of the ungerade-
gerade symmetry. In He: the lowest lying ungerade curve has no
crossing and for exploratory purposes it will be assumed that gerade
curve has only one crossing of interest. The cross section is
given by

ac = 3 |f +fd+fa]2, (10)
u g g A
where u and g refer to the ungerade or gerade potential and a and d
refer to the adiabatié or diabatic energy paths discussed in the

previous paragraphs. Since the ungerade potential has no crossings,

f = E%E Z(2.441) (eZiéﬁ_l)Cgl(cose) . (11)

u

In the above expressions nuclear symmetry effects arising from

the participation of identical atoms in the scattering process are
ignored; these effects have been discussed elsewhere, 35 and their
inclusion here would only serve to cloud the issue. In this study
‘phase shifts were evaluated by the WKB approximation. The use of
this approximation is valid at these energies,'® and the integrals
are evaluated by Gauss-Mehler quadratures.!? For the cases shown

here the cross sections were evaluated by means of Egs. (5) and (6).
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In general about 1600 partial waves were required to obtain conver—'
gence withih one percent, In a few cases the cross sections were
also evaluated by means of Eq. (7). For angles somewhat larger
than the threshold'angle the methods gave identical results. The
advantage of the Ford and Wheeler semiclassical procedure lies not
in the ease of calculations (even that is lost in the rainbow
region), but rather the tremendous physical insight that it brings
to the problem. The capability of relating scattering angles to
specific impact parameters in regions of the potential is a power-

ful tool.
RESULTS

A difficult problem exists in applying this type of model to
actual systems because the selection of a diabatic curve is arbitrary.
The main reason for this difficulty is that, unlike adiabatic states,
working definitions of diabatic states have not come into acceptance.
O'Malley ' has recently proposed a prescription for the determination
of diabatic states, but it has not as yet been applied. In order
to circumvent this problem, empirical diabatic statées can be con-
structed from adiabatic potential energy curves., The difficulty
here is that the adiabatic ab initio calculations are usually per—
formed at intervals of internuclear separation that are too wide
to permit any unambigious determination of the shape of the curves
in the crossing region. For this reason the calculations réported
in this paper were performed on a number of potentials in order to
test the sensitivity of the differential cross section to the shape

of the potentials in the crossing region.

The potentials are shown in Fig, 3a. Curve 1 is a simple mono~
tonic repulsive potential which could be considered as a typical

diabatic enefgy curve. Curve 2 corresponds to an adiabatic potential.

‘Actually it is the ground state 22; of the He; system., Curve 3 is

characterized by a discontinuous change in the first derivative of
the potential at the créssing point. Curve 4 maintains a smooth

change in the first derivative of the potential. Figure 3b displays

the deflection function ®, versus distance of closest approach r,, for the
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corresponding potentials showns in Fig. 3a. The shape of these

curves is most easily understood by examining the expression for

“

the deflection function written in the following way:!*

- . b r(dv/dr) dr 19

R ING VG S ”
The main contribution to this integral comes from the region of rs
the classical distance of closest approach. A heuristic justifica-
tion of this fact is that the radial motion of the nuclei is slowest
in the region of r,, and thus the time available for a perturbing
force to act is longest. Thus, if dV/dr has a sudden change,’say
a decrease, in the region r ~ r , then ® will exhibit a sudden change,
in this case a decrease. Even a region of constant potential
(dv/dr = 0) will cause a minimum in the deflection function, as is

shown by curve 2 of Figs. 3a and 3b.

Typical cross sections fesulting from these potentials are
_shown in Figs. 4 through 6 for various values of the Landau-Zener
parameter, A For comparison in these cases Vo = 6.9 x 10° cm/sec.
In each figure the dashed line represents the cross section arising
from a single potential == the diabatic curve 1 in Fig. 2. Changing
v, does not change the frequency of the interference pattern, but
only the amplitudes, as can easily be seen by inspection of Eq. (7).
As the scattering angle increases the radial velocity, VT(RX), ine
creases, and so the contribution from the adiabatic curve decreases
so that the cross section becomes extremely damped, oscillating
about the cross section from the diabatic curve., Inspection of
Eq. (7) shows that the frequency of the oscillations is governed
by the difference in the classical actions which in turn are roughly
proportional to the spacing between the two potential curves. The
greater this difference, the more frequent are the oscillations.
~Thus Fig. 6 exhibits more oscillation than Fig. 5, and the frequency
of oscillations in Fig. 5 is greater than that in Fig. 4. Although
all the figures shown are for one incident energy (50 eV, center-oif-

mass), results at other energies are very similar and not unexpected.



The behavior of an interference pattern with respect to the energy has
been discussed elsewhere'? and has been shown to vary, to a first ap-
proximation, as the square root of the energy. That is, increasing
the energy by a factor of 4 approximately doubles the frequency of
oscillations with respect to 8. The variation of the amplitudes with
energy is more complicated and depends upon the behavior of Eqs. (2)

and (8).

The surprising feature of these cross sections is the location of
the onset of the interference pattern. Using a classical interpreta-
tion, the threshold value for the scattering angle,lex, is determined
by examination of the deflection function as in Fig. 3b. For the case
involving curve 2, a value of 9; = 27° would be expected and similarly
6; = 34° and 9; = 38°, 1Inspection of Figs. 4 through 6 clearly shows
in each case, however, that GX is less than these expected values. For
the cases involving potential curves 2 and 3 the situation is complicated,
since the corresponding deflection functions each possess a minimum., A
minimum in the deflection function gives rise to a phenomenon called
rainbow scattering,® an effect which not only creates additional os-
cillations, but also shifts the appearance of the undulations to smaller
angles. However, the case corresponding to potential curve 4 is not
encumbered by these additional complications and can be more readily
analyzed. Here, classically, the threshold angle would be expected at
38%, while it actually.appears around 32°, This discrepancy points
out the different results produced by a partial wave calculation
[Eq. (6)] and by a semiclassical approximation [Eq. (7)]. Because
of the use of the stationary phase approximation, the semiclassical
approximation permits only one partial wave to contribute to the cross
section at a given angle and also establishes a unique relation be-
tween the scattering angle and the impact parameter. Because the
probability function, p, as a function of the impact parameter posesses
a discontinuity, the semiclassical approximation gives a sudden onset
to the interference pattern at that angle corresponding to the impact

parameter where the probability abruptly changes from 1 to O.
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The partia; wave treatment, on the other hand, constructs the cross

section from the contribution of many partial waves. The major
contribution comes from those partial waves that immediately
surround the wave corresponding to the semiclassical stationary
phase., As a result the partial wave expansion does not possess

the sharp features introduced by the semiclassical approximation,
and the onset of the interference pattern appears at an angle
smaller than the semiclassical Sx. For angles somewhat larger than
ex the two procedures give identical results. Also, as the energy
is increased, the agreement between two methods increases in the

threshold region.

This discrepancy between the partial wave and semiclassical
calculations is important, since attempts to use the elastic
perturbation phenomena to locate curve crossings have utilized
a classical type of analysis. In the two cases where it has been
applied, He+ - He, and He+ - Ne, the interpretation of the experi-
mental data yielded values for the crossing location that were
larger than 32 initio theoretical calculations indicated. This
is as it should be, for the classical analysis of the data can

only yield an upper limit to the location of the curve crossing.

Figure 7 shows the differential cross sections resulting from
three states, two of which cross. This situation corresponds to
that of Eq. (9) and resembles closely the case of He+ scattering
from He. The gerade potentials® used in the calculation of Fig. 7
are curves 1 and 4 of Fig. 3a; the ungerade potential is the lowest
lying 22; state of He:, and it is taken from the work of Gupta and
Matsen® suitably extended by means of screeped coulomb and r?

functions.
CONCLUSION

Figures 4 through 7 indicate that the model here described
does produce general agreement with present experimental results.
The agreement could certainly be improved, but the improvement

would be of questionable value. At this time there are simply too
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many parameters to obtain agreement with the onset of the elastic
perturbatioﬁ, and the frequency and the amplitude of the oscillations.
Furthermore, there is the question of an additional phase shift due
to the crossing alone. Thorson'! states that for rapid passage

and weak coupling an additional shift of T/4 is introduced, while
Mott and Massey!® obtain 1/2. In any case inclusion of this
additional shift does not qualitatively change the results., It
emphatically emphasizes the need for a rigorous treatment of the

problem.

There is one feature, however, that differs significantly
from the observations. Experimentally the perturbation appears
to extend over a limited range of the scattering angle. This
model produces results covering a much larger range in angle.

On the one hand, this discrepancy could be due to the failure

of the Landau-Zener probability to decay rapidly enough with an
_increase in the radial velocity at the crossing point. This is
equivalent to saying that as the scattering angle increases the
probability remains too large. On the other hand, it must be
realized that perhaps the experimental oscillations fade out for
different reasons. In most real systems isolated curve crossings
are rare, although ion-ion recombination problems are a notable
exception. With many crossings participating in the scattering
process it could well be that the oscillations are simply washed

out by the competing contributions from many scattering amplitudes.

In conclusion further understanding of collision phenomena
requires elucidation of the concept of diabatic states and rigorous
treatment of the multistate problem. Quantal solutions are espec-
ially needed near the threshold in angle and energy in order to
complement semiclassical methods which présumably will be validated

in the region away from the crossing.
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FIGURE CAPTIONS

Fig. 1. Examples of elastic perturbation effects observed in
differential elastic scattering patterns. Figure is taken from
ref. 2. The data was originally published in ref., 1,

Fig. 2. Schematic representation of diabatic potential energy
curves for a diatomic system A-R, Adiabatic curves are shown by
the dashed lines.

Fig. 3a. Potential energy curves used in the calculations in

this paper. Curves 1 and 2 actually correspond to the 22+ states
of He, and are taken from ref. 6 and 7. For small values®of r
these curves were extended by means of a screened coulomb function
and at large distances by an r~% function.

Fig. 3b. Classical deflection function versus classical distance
of closest approach, r,, for the corresponding potentials shown _
in Fig. 3a. The impact parameter is related to r, by b = ry(1-V(ry)/E).

Fig. 4. Differential cross sections versus scattering angle for
potentials 1 and 4 shown in Fig. 3a. All quantities are in the
center of mass coorindate system., =--- is for potential 1 alone;s——
is for potentials 1 and 4 with v, = 4.65 x 10 cm/sec (Eq., 2); —
is for potentials 1 and 4 with v, 3.80 x 107 cm/sec.

Fig. 5. Differential cross section versus scattering angle for
potentials 1 and 3 with vy = 2.03 x 10° cm/sec.

Fig. 6. Differential cross section versus scattering angle for
potentials 1 and 2 with vy, = 9.50 x 10® cm/sec.

Fig. 7. Differential cross section versus scattering angle

calculated by means of Eq. (10). Here v, = 8.54 x 10° cm/sec and
the appropriate potentials are discussed in the text.
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